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ABSTRACT

A stochastic model of sea storms for describing long-term statistics of extreme wave events is presented.

The formulation generalizes Boccotti’s equivalent triangular storm model by describing an actual storm

history in the form of a generic power law. The latter permits the derivation of analytical solutions for the

return periods of extreme wave events and associated statistical properties. Lastly, the relative validity of the

new model and its predictions is assessed by analyzing wave measurements retrieved from two NOAA Na-

tional Oceanographic Data Center (NODC) buoys in the Atlantic and Pacific Oceans.

1. Introduction

Stochastic modeling of time series of the significant

wave height Hs recorded at a given ocean site is the

principal focus of statistical methods employed in the

long-term prediction of extreme wave events during sea

storms (Krogstad 1985; Prevosto et al. 2000; Boccotti

2000). The reviews of several methods used for this can

be found in the work of Isaacson and Mackenzie (1981),

Guedes Soares (1989), and Goda (1999). In these methods,

the effects of the sea state on the short-term scales of

Ts ; 1–3 h are accumulated to predict the wave condi-

tions on the long-term time scales of Tl ; yr. In doing

so, it is reasonable to assume that with Ts, the sea state

is a homogenous and stationary stochastic field whose

properties are fully characterized by the directional spec-

trum of the sea surface and associated moments. As a re-

sult, wave parameters such as Hs, mean periods, and mean

wavelengths can be easily estimated from either the time

series of surface elevations or the associated spectrum.

With Tl, we then have a succession of storms where

each storm, according to Boccotti (2000), is identified

as a nonstationary sequence of sea states in which Hs

exceeds 1.5 times the mean annual significant wave

height, say, Hsm at a given site, and it does not fall below

that level during an interval of time longer than 12 h (see

also Arena 2004).

Given a succession of storm events in time, Boccotti

(1986, 2000) proposed the equivalent triangular storm

(ETS) model to predict the return period of extreme

wave events. In this model, a storm is described in time

as a triangle of height a indicative of storm intensity and

base b as a measure of duration. The statistical equiva-

lence is achieved by requiring that a equal the actual

maximum Hs in the storm, and b is chosen so that the

maximum expected wave height during the storm is the

same as that of the triangular storm (Borgman 1970,

1973). It is then assumed that a and b are realizations of

two random variables, say, A and B, respectively. Then,

the storm peak probability density function (pdf) pA(a) 5

Pr[A 2 (a, a 1 da)] is not fitted directly to the observed

storm peak data via ad hoc regressions, but it follows

analytically by requiring that the average times spent by

the equivalent and actual storm sequences above any

threshold h be identical. So, the significant wave height

history or the actual storm sequence is stochastically

equivalent to a succession of random triangle storms. This

type of equivalence defines the probabilistic structure

of the ETS model, which depends on wave data only

via the observed significant wave height exceedance

P(h) 5 Pr(Hs . h) and the conditional average duration

b(a) 5 BjA 5 a, both estimated via regression. Then, the

estimates of wave extremes and their associated statistics
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simply follow from the density pA with no need for data

fitting.

In particular, Boccotti (2000) derived an analytical

solution for the return period R(Hs . h) of a storm

during which the maximum Hs exceeds h as that of

a triangle storm whose a is above h. Arena (2004) ex-

tended this result to account for seasonal effects and

wave directionality. Boccotti (1986, 2000) also derived

the return period R(Hmax . H) of a storm where the

maximum individual wave height Hmax exceeds a fixed

threshold H. Recently, Arena (2004) and Arena and

Pavone (2006) exploited the ETS model to define the

return period R(Cmax . C) of a storm during which the

largest nonlinear crest height Cmax exceeds a fixed

threshold C. Further, Arena and Pavone (2009) derived

the solution of the return periods RN(R$N) of a storm

during which exactly N waves (at least N waves) exceed

a given threshold. These analytical results have been

compared against buoy measurements, demonstrating

their relevance to the design of coastal and offshore

structures (Arena and Pavone 2006, 2009).

In this paper, we extend and generalize Boccotti’s tri-

angular storm model to include other possible and plau-

sibly more realistic descriptions of the temporal history

of the significant wave heights observed at a fixed point

during a sea storm. In particular, we describe an actual

storm in time t in the form of a generic power law jt 2 t0jl,

where l is a shape parameter and t0 is the time of the

storm peak. Boccotti’s ETS model is recovered for l 5 1.

For the ‘‘generalized’’ model, the associated storm

peak density pA stems from the analytical solution of

a Volterra integral equation of the first kind. We then

derive new analytical expressions for both R(Hs . h)

and R(Hmax . H) as function of pA and perform a sensi-

tivity analysis with respect to l to assess the deviations

from the ETS predictions. Further, we present some

statistical properties of the largest waves in storms.

Finally, we apply the generalized model to the wave data

gathered by two National Oceanic and Atmospheric

Administration (NOAA) National Oceanographic Data

Center (NODC) buoys moored off the Georgia and

California coasts.

2. Equivalent power storm (EPS) model

Consider a time interval t during which N(t) storm

events occur at a site. The exceedance probability of the

Hmax in a particular storm is approximated by (Borgman

1973)

P(H
max

.H)51� exp

ðD

0

ln 1�P[HjH
s
5h(t)]

� �
T[h(t)]

dt

� �
,

(1)

where D is the storm duration, h(t) is the significant

wave height history, T is the mean zero upcrossing wave

period (Boccotti 2000), and P(HjHs 5 h) is the exceed-

ance probability of the crest-to-trough wave height H,

given Hs 5 h. The latter is of the form (Boccotti 1981,

1997, 2000)

P(HjH
s
5 h) 5 exp � 4H2

H2
s (1 1 c*)

" #
, (2)

where c* 5 jc(T*)j/c(0), with T* representing the ab-

scissa of the first absolute minimum of the surface ele-

vation covariance c(T). In the narrowband limit, c* / 1

and (2) reduce to the Rayleigh law (Rice 1944, 1945;

Longuet-Higgins 1952). The maximum wave height ex-

pected during the actual storm follows from

H
max

5

ð‘

0

P(H
max

. H) dH. (3)

Now, assume that each actual storm can be described as

an EPS whose significant wave height h varies in t ac-

cording to the power law

h(t) 5 a 1�
2 t � t

0

�� ��
b

� �l
" #

, t
0
� b

2
# t # t

0
1

b

2
, (4)

where b is the storm duration, a is the peak amplitude at

t0, and l (0 , l , ‘) is a shape parameter (see Fig. 1).

The EPS model has one degree of freedom in l to better

represent the actual storm peak. Given (4), the proba-

bility that Hmax . H follows from (1) as

P(H
max

. H; a, b) 5 1� exp
b

la

ða

0

ln[1� P(H/H
s
5 h)]

T(h)
1� h

a

� �1/l�1

dh

( )
. (5)

Then, the expected H
max

of the equivalent storm can be

computed from (3). The estimation of the EPS param-

eters follows easily by equating a to the maximum sig-

nificant wave height and b corresponds to the expected

Hmax of the actual storm.

As an example, Fig. 2 shows the equivalent model (4)

estimated for some actual storms for different values of

l. It is seen that the EPS approximation has smooth

peaks for l $ 1 and sharp cusps if 0 , l , 1. Peaks

become smoothly sharper as l decreases. For l 5 1, the
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ETS model of Boccotti with linear cusps is recovered.

The analysis of the data suggests the presence of a cor-

relation trend between duration b and peak a. Small

values of b—say, 20–40 h—in the ETS model are typical

of brief and very severe storms, whereas large values

of b—say, 100–200 h—for the same model tend to char-

acterize storms with either a persistent single peak or

multiple peaks.

Note that it is not generally guaranteed a priori that

the P(Hmax . H) in an actual storm is the same as that of

the associated EPS, as we require just the first-order

statistical moments of the two distributions to be identi-

cal. In practice they are so and also slightly sensitive to

the parameter l, as seen in Fig. 3 for the ‘‘storm of the

century’’ from Fig. 2a (Cardone et al. 1996). The same

figure also shows that the ETS model slightly over-

estimates the observed P(Hmax . H) of the actual storm

in the range of low probabilities. More significantly, the

EPS model allows us to improve on the ETS predictions

by choosing the parameter l that will best fit the tail of

the exceedance distribution describing the maximum wave

height in a storm. For the storms analyzed in this paper, the

optimal l turns out to be roughly 0.75, as shown in Fig. 3.

The analysis of oceanic data later on will show that an EPS

model with an optimized l provides long-term predictions

of wave extremes slightly more conservative than those

based on ETS models.

a. Distribution of storm peak

The stochastic modeling of the EPS approximation for

an actual sea storm sequence, as that shown in Fig. 4,

proceeds by assuming that the height a and base b of

the equivalent storm are values of the random variables

A and B, respectively. Thus, we introduce the joint

pdf pA,B(a, b) 5 pA(a)pBjA(bja) of A and B and de-

fine pA,B(a, b) db da as the fraction of equivalent storms

having a duration in (b, b 1 db) and peak amplitude in

(a, a 1 da). The pdf of A follows from

p
A

(a) 5

ð‘

0

p
A,B

(a, b) db, (6)

and the conditional average duration of B, given A 5 a, is

b(a) 5 BjA 5 a 5

ð‘

0

bp
BjA(bja) db. (7)

This and the exceedance probability P(h) 5 P(Hs . h)

are the only two quantities in the EPS model that are

estimated from data via regression, as it will be shown

later on. The storm peak density pA(a) is not fitted di-

rectly from the observed storm peak data via ad hoc

regressions, but it is stemmed in an analytical form as

function of both P(h) and b(a) by invoking the stochastic

equivalence between the sequence of actual storms and

that of the equivalent storms (see Fig. 4). This is ac-

complished by imposing the condition that the average

time during which Hs is above h is the same in both the

actual and equivalent storm sequences. For the actual

storm sequence, the average time TR within the interval

t during which Hs stays above h is given by

T
R

(h) 5 tP(h). (8)

To derive the average time TEPS during which Hs is above

h in the equivalent storm sequence, we first consider

dN(a, b) 5 N(t)p
A

(a)p
BjA(b, a) db da (9)

as the number of equivalent storms in the random se-

quence having a duration B in (b, b 1 db) and peak

FIG. 1. Reference frame: (left) equivalent parabolic storm and (right) equivalent

triangular storm.
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amplitude A in (a, a 1 da), and we recall that N(t) is

the total number of storms in t. It follows then that

T
EPS

(h) 5

ð‘

a5h

ð‘

b50

t
s
(h, a, b) dN(a, b), (10)

where, from (4)

t
s
(h, a, b) 5 b 1� h

a

� �1/l

(11)

is the time interval during which Hs stays above h in an

equivalent storm with a and b (see Fig. 1). Thus, using

(7), (9), and (11), (10) can be simplified further as

T
EPS

(h) 5 N(t)

ð‘

h

b(a) 1� h

a

� �1/l

(a) da. (12)

We can now require that TEPS(h) 5 TR(h) for any h, and

this will lead to the following Volterra integral equation

of the first kind:

tP(h) 5 N(t)

ð‘

h

b(a) 1� h

a

� �1/l

p
A

(a) da. (13)

Solving (13) for pA yields (see appendix)

p
A

(a) 5
t

N(t)

a

b(a)
G(l, a). (14)

In the applications to follow, we will assume that P(h)

is given by the Weibull distribution (cf. Battjes 1972;

Isaacson and Mackenzie 1981; Ochi 1998)

P(h) 5 exp �
h� h

l

w

� �u	 

, h $ h

l
, (15)

where the parameters hl, w, and u can be estimated it-

eratively (Goda 1999).

In general, (15) does not describe the observed overall

distributions of Hs well, but it does fit the tails fairly

accurately (Ferreira and Guedes Soares 2000). Thus, it is

preferable to fit (15) to relatively large values of the

observational data in the low-probability region (Guedes

Soares 1989; Boccotti 2000) and to use a lognormal fit

for the high-probability region, as suggested by Haver

(1985).

We point out that the EPS model depends on the

measured data only via the observed P(h) and b(a), as in

FIG. 2. Sea storms recorded by NOAA NODC buoys. For each actual storm, the EPS models are plotted for different values of l.
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the ETS formulation. Then, the density pA satisfies the

Volterra’s integral equation of first kind (13), which

imposes the stochastic equivalence between the equiv-

alent and actual storm sequences for an arbitrary l . 0.

As a result, the EPS model is defined in a probabilistic

setting and no more data fitting is required to estimate

wave extremes and develop their associated statistics. In-

deed, in the following we shall derive analytical expressions

of the return periods R(Hs . h) and R(Hmax . H) ex-

plicitly as a function of the peak distribution (14) as well

as investigate some statistical properties of large waves in

storms using probabilistic principles.

b. Return period R(Hs . h)

The return period R(Hs . h) of an actual storm where

the maximum Hs exceeds h is the same as the return

period of an equivalent power storm whose peak A ex-

ceeds h. Thus,

R(H
s
. h) 5

t

N(t; A . h)
, (16)

where N(t; A . h) represents the average number of

equivalent storms whose peak A exceeds h during t.

Integrating (9) over all the possible b and a . h yields

N(t; A . h) 5

ð‘

a5h

ð‘

b50

dN(a, b) 5 N(t)

ð‘

h

p
A

(a) da

(17)

and together with (14), (16) reduces to

R(H
s
. h) 5

1ð‘

h

a

b(a)
G(l, a) da

. (18)

The mean persistence of Hs above h is given by the

general expression (Boccotti 2000)

D(h) 5 R(H
s
. h)P(H

s
. h). (19)

For l 5 1, (18) reduces to the expressions valid for ETS

models, as to be expected (cf. Boccotti 2000).

c. Return period R(Hmax . H)

Consider the number Nw(H) of equivalent storms

where the largest wave occurs with a crest-to-trough

height Hmax greater than H. Then, the return period

R(Hmax . H) of an actual storm is defined as that of an

equivalent storm whose maximum Hmax exceeds H.

Thus,

R(H
max

. H) 5
t

N
w

(H)
, (20)

where

N
w

(H) 5

ð‘

Hmax5H

ð‘

a50

ð‘

b50

dN
w

(H, a, b). (21)

FIG. 3. Comparison among the exceedance probabilities P(Hmax .

H) calculated for the actual storm of the century in Fig. 2 and for the

associated equivalent storms with different values of l. The best fit

of the observed distribution’s tail is attained for l 5 0.75.

FIG. 4. Significant wave height time series recorded by NOAA NODC 46006 buoy located in the Pacific Ocean during the month of

October 2000. The sequence of equivalent parabolic storms is also plotted (l 5 2). Dotted line shows the storm threshold hcrit 5 1.5Hsm.

1110 J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y VOLUME 40



In the preceding, dNw(H, a, b) is the number of equiv-

alent storms in the sequence of random storms with peak

amplitude A in (a, a 1 da) and duration B in (b, b 1 db),

and whose maximum wave occurs with a height Hmax in

(H, H 1 dH). More explicitly,

dN
w

(H, a, b) 5 dN(a, b)p(H
max

5 H; a, b) dH, (22)

where p(Hmax 5 H; a, b) is the pdf of Hmax that follows

from (5) and dN is given by (9). Thus, (20) reduces to

R(H
max

. H) 5
t/N(t)ð‘

h

p
A

(a)P[H
max

. H; a, b(a)] da

.

(23)

Using (14), this is simplified further to

R(H
max

.H)5
1ð‘

h

a

b(a)
G(l, a)P[H

max
.H; a, b(a)] da

,

(24)

which generalizes the solution appropriate to the ETS

model (Boccotti 2000; Arena and Pavone 2006, 2009).

3. Extreme waves in sea storms

Given l and R, consider now the wave with the largest

crest-to-trough height Hmax greater than H that follows

from (24). What is the most probable value of the sig-

nificant wave height peak A of the storm during which

that wave occurred?

This question has some practical interest, and it can be

addressed in the context of EPS models without data

fitting, by simply using probabilistic principles as fol-

lows. We first integrate (22) over b to obtain the number

dNw(H, a) of equivalent storms whose largest wave

height Hmax is greater than H, and the peak intensity A

in [a, a 1 da] as

dN
w

(H, a) 5

ð‘

Hmax5H

ð‘

b50

dN
w

(H, a, b). (25)

Then, given F 5 fHmax . Hg, the conditional probability

that the extreme event occurs in an equivalent storm

whose peak intensity A is in [a, a 1 da] follows from (25) as

p
AjF(a; H) da 5

dN
w

(H, a)ð‘

a50

dN
w

(H, a)

. (26)

By virtue of (22), the preceding can be rewritten as

p
AjF(a; H) 5

p
A

(a)P[H
max

. H; a, b(a)]ð‘

0

p
A

(a)P[H
max

. H; a, b(a)] da

. (27)

This pdf is characterized by its conditional mean mAjF (H)

and standard deviation sAjF(H), which are both func-

tions of the given height H. If the coefficient of variation

g 5 sAjF /mAjF� 1, then an exceptional wave event most

probably occurs during a storm whose maximum sig-

nificant wave height, that is, the storm peak A, is very

close to mAjF. In the applications, we will show that such

theoretical predictions based on EPS models are ap-

proximately satisfied in actual storm data.

4. Analysis of storm data

Hereafter, we will apply the EPS model to elaborate

some wave measurements retrieved by the NOOA buoys

41008 and 46006 moored off the Georgia and California

coasts, respectively. Operational since 1997, buoy 41008

is at 40 n mi southeast of Savannah, Georgia, in a water

depth of 18 m. Buoy 46006 has been operational since

1977 at 600 n mi west of Eureka, California, in a water

depth of 4023 m.

Given that a sequence of actual storms occurred at

either buoy locations, the long-term wave statistics are

uniquely defined by the following:

1) the distribution P(Hs . h) of Hs at the site,

2) the conditional average base b(a), and

3) the pdf pA(a) of A.

The first two items above are readily estimated from

data, whereas pA follows from the analytical solution

(14) of the Volterra integral Eq. (13). For example,

Fig. 5 shows that P(Hs . h) is well represented by the

Weibull law (15) at both buoy locations. The corre-

sponding distributional parameters u, w, and hl are given

in Table 1. For each storm, we also computed the H
max

as

function of a, as in Fig. 6. Further, for l given, the con-

ditional duration b(a) of a location is described by

b(a) 5 K
1

ln(a/a9) 1 K
2
, (28)

where K1 and K2 are regression parameters and a9 is set

equal to 1 m. In particular, consider the significant wave

height series recorded by buoy 46006 during the period

2000–07. Figure 7 shows the regression (28) estimated

from the values of a and b observed during the actual

storms for different shapes of the equivalent storm, in-

cluding l 5 0.5 (cusp), 1 (triangular), 2 (parabolic), and

3 (cubic). The corresponding regression parameters are

given in Table 2. It is seen that b(a) tends to increase as l
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decreases. In particular, the duration of a parabolic-type

storm (l . 1) is in general smaller than that of a cusp-type

storm (l , 1). This trend is confirmed in Fig. 8, where

we plotted for each buoy the mean duration

b
m

(l) 5

ð‘

0

p
A

(a)b(a) da, (29)

estimated from the actual storms recorded as a function

of l. Note that bm follows the same trend at both buoys

despite that one buoy is located in the Pacific Ocean and

the other in the Atlantic Ocean. Further, bm slightly

changes for values of l above lc 5 0.7. For l values

smaller than lc, bm increases sharply toward unrealistic

durations of 300 h and longer, causing the long-term

predictions of wave extremes to be underestimated sig-

nificantly, as we will show later.

Given P(Hs . h) and b(a), we can now compute pA(a)

by using (14) and make predictions for both the return

period R(Hs . h) and the mean persistence D(h) from

(18) and (19), respectively. Figure 9 shows the latter

predictions based on the data of buoy 46006 for various

values of l. The results in Fig. 9a suggest that parabolic-

type storms yield predictions consistent with those of

the ETS model (l 5 1). However, for values of l below

the threshold lc 5 0.7, the EPS model drastically un-

derestimates the extreme significant wave heights in

comparison to the ETS predictions. Figure 8 suggests

that these are related to equivalent storms with dura-

tions longer than 400–500 h, which are unrealistic. A

similar trend is also observed in the predictions of the

mean persistence D(h) of buoy 46006 plotted in Fig. 9b.

Figure 10 illustrates the predictions for R(Hs . h) and

D(h) computed from the data of the buoy 41008 for the

triangular (l 5 1), parabolic (l 5 2), and cusp (l 5 0.75)

models. For the same values of l, the predictions of the

return period R(Hmax . H) are computed using (24) for

buoy 46006 and shown in Fig. 11.

Our analysis reveals that if a cusp model is adopted

(l , 1), then l should be greater than lc 5 0.7 to avoid

unrealistic predictions. Moreover, when l . lc, the

predictions based on the EPS model are somewhat in-

sensitive to changes in the shape parameter l, and they

tend to be robust. Particularly for the optimal model that

best fits the distribution’s tail of the maximum wave

height observed in a given storm (l 5 0.75; see Fig. 3),

the EPS predictions are slightly more conservative than

those from the ETS model (l 5 1), but the predicted

levels differ by less than 1.5%.

Figure 12 shows the conditional pdf computed from

(27) for a cusp model (l 5 0.75) for various values of

Hmax for buoy 46006. As Hmax increases, the conditional

pdf (27) tends to become symmetric relative to its mean

mAjF. Lastly, Fig. 13a shows the coefficient of variation

g 5 sAjF/mAjF as function of Hmax. Note that g is slightly

sensitive to l, and it tends to decrease for larger wave

heights. For Hmax . 25 m, g is very small and nearly

FIG. 5. Weibull plot of the probabilities of exceedance P(Hs . h)

estimated for both NOAA buoys 41008 and 46006 in the Atlantic

and Pacific Oceans, respectively. Continuous lines are associated

with the theoretical Weibull distributions with parameters given in

Table 1.

TABLE 1. Parameters of the Weibull distribution (15).

Buoy location u w (m) hl (m)

NDBC 41008 1.169 0.619 0.40

NDBC 46006 1.310 2.120 0.80

FIG. 6. NOAA 46006 buoy in the Pacific Ocean: regression of

H
max

and the peak intensity a of the actual storms recorded during

2000–07.
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0.11, irrespective of l. This implies that an exceptional

wave event most probably occurs during a storm whose

maximum significant wave height A is very close to mAjF.

Further, the ratio Hmax/mAjF is also slightly sensitive to l,

and the maximum wave height does not exceed twice the

value of its expected storm peak intensity, as clearly seen

in Fig. 13b.

5. Conclusions

We have presented a generalization of the ETS model

of Boccotti (2000). To introduce flexibility in modeling

the significant wave height history locally at storm peaks,

we define a sequence of random equivalent storms with

parabolic (l . 1) or cusped (l , 1) shapes, with l as a

free positive parameter. This approximation relies on

the measured data, specifically, on the exceedance dis-

tribution P(h) of the significant wave heights observed

and the conditional base b(a), both of which can be es-

timated via regression. The storm-peak density pA fol-

lows from the solution of a Volterra integral equation of

the first kind by requiring that the average time interval

during which the significant wave height lingers above

a given threshold is identical in both the equivalent

storm sequence and actual storms. No data fitting is then

required in describing wave extremes and associated

statistics. Hence, we were able to derive the return pe-

riods R(Hs . h) and R(Hmax . H) as explicit functions

of pA and to describe the statistical properties of the

largest waves in storms based solely on probabilistic

principles.

As applications, we have examined the statistics of

extreme waves in numerous storms recorded by two

NOAA buoys located in the Atlantic and Pacific Oceans.

Our analysis reveals that l should be greater than the

critical value lc 5 0.7 to avoid unrealistic predictions.

For l . lc, the EPS model yields robust predictions,

being slightly sensitive to changes in the shape pa-

rameter. We also observed that for a given storm, the

TABLE 2. Parameters K1 and K2 (h) of the base height regression

b(a) for NOAA NODC buoys for different values of l.

l 0.50 0.75 1 2 3

Buoy 46006

K1 2189.28 234.277 214.892 26.197 25.588

K2 993.15 204.14 90.351 31.694 25.978

Buoy 41008

K1 20.1200 20.1847 23.7648 25.6872 26.4029

K2 680.35 145.47 70.112 29.503 26.064

FIG. 7. NOAA buoy 46006 in the Pacific Ocean: regression (28) of the b(a) as function of the storm peak a for

different values of l from data recorded during 2000–07: (a) cubic, (b) triangular, (c) parabolic, and (d) cusp storms.
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ETS model slightly overestimates the exceedance prob-

ability P(Hmax . H) of the maximum wave height ob-

served in the storms. The EPS model is then exploited

to improve the ETS predictions by choosing the optimal

value of the shape parameter l that best fits the tail of

the maximum wave height distribution observed in a

storm. For the storms analyzed in this study, we find

that the optimal l roughly equals 0.75. For these opti-

mal models, the prediction of extremes is about 1.5%

FIG. 8. Mean duration bm(l) of storms recorded by NOAA

buoys 46006 and 41008 in the Pacific and Atlantic Oceans,

respectively, during the period 2000–07.

FIG. 9. NOOA 46006 buoy in the Pacific Ocean: (a) R(Hs . h) and

(b) D(h) computed for different values of l.

FIG. 10. Same as Fig. 9, except for NOOA buoy 41008 in the

Atlantic Ocean.

FIG. 11. NOOA 46006 buoy in the Pacific Ocean: R(Hmax . H)

computed for different values of l.
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larger and thus more conservative than those of the

ETS model.

APPENDIX

Solutions for Probability Density Function pA(a)

In (13), define

G(a) 5
N(t)b(a)

ta1/l
p

A
(a) (A1)

to obtain an integral Volterra equation of first kind for

G, namely,

P(h) 5

ð‘

h

G(a)(a� h)1/l da. (A2)

The solution of this equation varies depending on if l . 1,

l 5 1, or 0 , l , 1, namely,

G(l, a) 5

sin(p/l)

p/l

ð‘

1

d2P

dz2

����
a, x

(x� 1)�1/l dx, if l . 1

d2P

da2
, if l 5 1

(�1)nan

n!

sin(pm)

pm

ð‘

1

dn12P

dzn12

����
a,x

(x� 1)�m dx, if l 5 (n 1 m)�1
, 1 ,

8>>>>>>>><
>>>>>>>>:

(A3)

with (integer) n . 1 and 0 , m , 1. If l 5 1/n is rational,

that is, m 5 0, then from (A3)

G(l, a) 5�(�1)n an

n!

dn11P

dan11
. (A4)

In applications, G(l, a) is computed via numerical in-

tegration if l 6¼ 1 or m 6¼ 0. In the following we will

present the formal derivation of the Volterra integral

Eq. (A2) that leads to (A3).

FIG. 12. NOAA 46006 buoy in the Pacific Ocean: conditional

probability pAjF(a; H) of the intensity A of the equivalent cusp

storm (l 5 0.75) given the event F 5 fHmax . Hg, where Hmax is

the crest-to-trough height of the largest wave of the storm.

FIG. 13. NOAA 46006 buoy in the Pacific Ocean: (a) the varia-

tion coefficient g 5 sAjF/mAjF of the storm peak intensity A given

F 5 (Hmax . H) and (b) the associated ratio between Hmax and the

conditional mean mAjF computed for different values of l, where

Hmax is the crest-to-trough height of the largest wave of the storm.
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a. Solution for l 5 1

In this case, (A2) reduces to

P(h) 5

ð‘

h

G(a)(a� h) da. (A5)

The solution for G proceeds by differentiating both

members of (A5) twice with respect to h and setting h 5 a.

This yields

G(a) 5
d2P

da2
. (A6)

b. Solution for l . 1

Consider a solution of (A2) of the form

G(a) 5

ð‘

a

g(z)H(z� a) dz, (A7)

where g(z $ 0) and H(z $ a) are arbitrary functions.

Substituting (A7) into (A2) yields

P(h) 5

ð‘

a5h

ð‘

z5a

g(z)H(z� a)(a� h)1/l da dz. (A8)

For z given, we first integrate with respect to a and then

over z. On this basis, (A8) can be rewritten as

P(h) 5

ð‘

h

g(z)K(h, z) dz, (A9)

where

K(h, z) 5

ðz

h

H(z� a)(a� h)1/l da. (A10)

Now, (A9) can be easily solved for g if the arbitrary

function H in (A10) is chosen to yield K ; (z 2 h) from

(A10). To do so, we first make a change of variables

a 5
z 1 h

2
1

z� h

2
cosu (A11)

to rewrite (A10) as

K(h, z) 5�
ð0

p

H
z� h

2
(1� cosu)

	 

z� h

2

� �1/l

3 (11 cosu)1/l z� h

2
sinu du. (A12)

On the assumption that

H(z� a) 5
1

(z� a)1/l
, (A13)

it will follow that for l . 1,

K(h, z) 5
z� h

2

ðp

0

1 1 cosu

1� cosu

� �1/l

sinu du 5
p(z� h)

l sin(p/l)
.

(A14)

Thus, (A9) is simplified to

P(h) 5
p/l

sin(p/l)

ð‘

h

g(z)(z� h) dz. (A15)

This is the same type of Volterra equation as in case (a).

We thus solve for g by differentiating both sides of (A15)

twice with respect to h and then set h 5 z. This yields

g(z) 5
sin(p/l)

p/l

d2P

dz2
. (A16)

From (A13) and (A16), (A7) leads to the solution

G(a) 5
sin(p/l)

p/l

ð‘

a

d2P

dz2

1

(z� a)1/l
dz, l . 1. (A17)

c. Solution for 0 , l , 1

In this case, we seek an integer n . 1 and a real

number 0 , m , 1 such that

1

l
5 n 1 m. (A18)

On this basis, (A2) becomes

P(h) 5

ð‘

h

G(a)(a� h)n1m da. (A19)

Differentiate both sides of the preceding expression

n times to get

(�1)n

n!

dnP

dhn 5

ð‘

h

G(a)(a� h)m da, 0 , m , 1. (A20)

This is the same type of integral equation as in case (b).

Thus,

G(a) 5
(�1)n

n!

sin(pm)

pm

ð‘

a

dn12P

dzn12

1

(z� a)m dz. (A21)
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